32 research outputs found

    Familial pancreatic cancer with PALB2 and NBN pathogenic variants: a case report

    Get PDF
    Background Family history is one of the risk factors for pancreatic cancer. It is suggested that patients with pancreatic cancer who have a familial history harbor germline pathogenic variants of BRCA1 and/or BRCA2 (BRCA1/2), PALB2, or ATM. Recently, some germline variants of familial pancreatic cancers (FPCs), including PALB2, have been detected. Several countries, including Japan, perform screening workups and genetic analysis for pancreatic cancers. We have been carrying out active surveillance for FPC through epidemiological surveys, imaging analyses, and genetic analysis. Case presentation Here, we present the case of a female patient harboring pathogenic variants of PALB2 and NBN, with a family history of multiple pancreatic cancer in her younger brother, her aunt, and her father. Moreover, her father harbored a PALB2 pathogenic variant and her daughter harbored the same NBN pathogenic variant. Given the PALB2 and NBN variants, we designed surveillance strategies for the pancreas, breast, and ovary. Conclusions Further studies are required to develop strategies for managing FPCs to facilitate prompt diagnosis before their progression

    Arguments for the biological and predictive relevance of the proportional recovery rule

    Full text link
    The proportional recovery rule (PRR) posits that most stroke survivors can expect to reduce a fixed proportion of their motor impairment. As a statistical model, the PRR explicitly relates change scores to baseline values - an approach that arises in many scientific domains but has the potential to introduce artifacts and flawed conclusions. We describe approaches that can assess associations between baseline and changes from baseline while avoiding artifacts due either to mathematical coupling or to regression to the mean. We also describe methods that can compare different biological models of recovery. Across several real datasets in stroke recovery, we find evidence for non-artifactual associations between baseline and change, and support for the PRR compared to alternative models. We also introduce a statistical perspective that can be used to assess future models. We conclude that the PRR remains a biologically relevant model of stroke recovery

    No evidence for motor-recovery-related cortical connectivity changes after stroke using resting-state fMRI

    Get PDF
    It has been proposed that a form of cortical reorganization (changes in functional connectivity between brain areas) can be assessed with resting-state (rs) functional MRI (fMRI). Here, we report a longitudinal data set collected from 19 patients with subcortical stroke and 11 controls. Patients were imaged up to five times over 1 year. We found no evidence, using rs-fMRI, for longitudinal poststroke cortical connectivity changes despite substantial behavioral recovery. These results could be construed as questioning the value of resting-state imaging. Here, we argue instead that they are consistent with other emerging reasons to challenge the idea of motor-recovery-related cortical reorganization poststroke when conceived of as changes in connectivity between cortical areas. NEW & NOTEWORTHY We investigated longitudinal changes in functional connectivity after stroke. Despite substantial motor recovery, we found no differences in functional connectivity patterns between patients and controls, nor any changes over time. Assuming that rs-fMRI is an adequate method to capture connectivity changes between cortical regions after brain injury, these results provide reason to doubt that changes in cortico-cortical connectivity are the relevant mechanism for promoting motor recovery

    Evidence for a subcortical origin of mirror movements after stroke: A longitudinal study

    Get PDF
    Following a stroke, mirror movements are unintended movements that appear in the non-paretic hand when the paretic hand voluntarily moves. Mirror movements have previously been linked to overactivation of sensorimotor areas in the non-lesioned hemisphere. In this study, we hypothesized that mirror movements might instead have a subcortical origin, and are the by-product of subcortical motor pathways upregulating their contributions to the paretic hand. To test this idea, we first characterized the time course of mirroring in 53 first-time stroke patients, and compared it to the time course of activities in sensorimotor areas of the lesioned and non-lesioned hemispheres (measured using functional MRI). Mirroring in the non-paretic hand was exaggerated early after stroke (Week 2), but progressively diminished over the year with a time course that parallelled individuation deficits in the paretic hand. We found no evidence of cortical overactivation that could explain the time course changes in behaviour, contrary to the cortical model of mirroring. Consistent with a subcortical origin of mirroring, we predicted that subcortical contributions should broadly recruit fingers in the non-paretic hand, reflecting the limited capacity of subcortical pathways in providing individuated finger control. We therefore characterized finger recruitment patterns in the non-paretic hand during mirroring. During mirroring, non-paretic fingers were broadly recruited, with mirrored forces in homologous fingers being only slightly larger (1.76 times) than those in non-homologous fingers. Throughout recovery, the pattern of finger recruitment during mirroring for patients looked like a scaled version of the corresponding control mirroring pattern, suggesting that the system that is responsible for mirroring in controls is upregulated after stroke. Together, our results suggest that post-stroke mirror movements in the non-paretic hand, like enslaved movements in the paretic hand, are caused by the upregulation of a bilaterally organized subcortical system

    Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation

    Get PDF
    © 2019 American Neurological Association Objective: Patients with chronic stroke have been shown to have failure to release interhemispheric inhibition (IHI) from the intact to the damaged hemisphere before movement execution (premovement IHI). This inhibitory imbalance was found to correlate with poor motor performance in the chronic stage after stroke and has since become a target for therapeutic interventions. The logic of this approach, however, implies that abnormal premovement IHI is causal to poor behavioral outcome and should therefore be present early after stroke when motor impairment is at its worst. To test this idea, in a longitudinal study, we investigated interhemispheric interactions by tracking patients’ premovement IHI for one year following stroke. Methods: We assessed premovement IHI and motor behavior five times over a 1-year period after ischemic stroke in 22 patients and 11 healthy participants. Results: We found that premovement IHI was normal during the acute/subacute period and only became abnormal at the chronic stage; specifically, release of IHI in movement preparation worsened as motor behavior improved. In addition, premovement IHI did not correlate with behavioral measures cross-sectionally, whereas the longitudinal emergence of abnormal premovement IHI from the acute to the chronic stage was inversely correlated with recovery of finger individuation. Interpretation: These results suggest that interhemispheric imbalance is not a cause of poor motor recovery, but instead might be the consequence of underlying recovery processes. These findings call into question the rehabilitation strategy of attempting to rebalance interhemispheric interactions in order to improve motor recovery after stroke. Ann Neurol 2019;85:502–513

    Comparing a Novel Neuroanimation Experience to Conventional Therapy for High-Dose Intensive Upper-Limb Training in Subacute Stroke: The SMARTS2 Randomized Trial

    Get PDF
    BACKGROUND Evidence from animal studies suggests that greater reductions in poststroke motor impairment can be attained with significantly higher doses and intensities of therapy focused on movement quality. These studies also indicate a dose-timing interaction, with more pronounced effects if high-intensity therapy is delivered in the acute/subacute, rather than chronic, poststroke period. OBJECTIVE To compare 2 approaches of delivering high-intensity, high-dose upper-limb therapy in patients with subacute stroke: a novel exploratory neuroanimation therapy (NAT) and modified conventional occupational therapy (COT). METHODS A total of 24 patients were randomized to NAT or COT and underwent 30 sessions of 60 minutes time-on-task in addition to standard care. The primary outcome was the Fugl-Meyer Upper Extremity motor score (FM-UE). Secondary outcomes included Action Research Arm Test (ARAT), grip strength, Stroke Impact Scale hand domain, and upper-limb kinematics. Outcomes were assessed at baseline, and days 3, 90, and 180 posttraining. Both groups were compared to a matched historical cohort (HC), which received only 30 minutes of upper-limb therapy per day. RESULTS There were no significant between-group differences in FM-UE change or any of the secondary outcomes at any timepoint. Both high-dose groups showed greater recovery on the ARAT (7.3 ± 2.9 points; P = .011) but not the FM-UE (1.4 ± 2.6 points; P = .564) when compared with the HC. CONCLUSIONS Neuroanimation may offer a new, enjoyable, efficient, and scalable way to deliver high-dose and intensive upper-limb therapy
    corecore